Ozone and limonene in indoor air: a source of submicron particle exposure.

نویسندگان

  • T Wainman
  • J Zhang
  • C J Weschler
  • P J Lioy
چکیده

Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.

Secondary organic aerosol (SOA) results from the oxidation of reactive organic gases (ROGs) and is an indoor particle source. The aerosol mass fraction (AMF), a.k.a. SOA yield, quantifies the SOA forming potential of ROGs and is the ratio of generated SOA to oxidized ROG. The AMF depends on the organic aerosol concentration, as well as the prevalence of later generation reactions. AMFs have bee...

متن کامل

Remediation of ozone pollution by ornamental plants in indoor environment

The indoor air quality is much more matter of concern as relative to ambient or outdoor air quality, especially in the context of human health.  However, very few studies have been reported for remediation of indoor ozone by plant species. The main objective of this study is to evaluate ozone deposition velocities and ozone removal effectiveness of three indoor ornamental plant species (Dra...

متن کامل

Kinetic analysis of competition between aerosol particle removal and generation by ionization air purifiers.

Ionization air purifiers are increasingly used to remove aerosol particles from indoor air. However, certain ionization air purifiers also emit ozone. Reactions between the emitted ozone and unsaturated volatile organic compounds (VOC) commonly found in indoor air produce additional respirable aerosol particles in the ultrafine (<0.1 microm) and fine (<2.5 microm) size domains. A simple kinetic...

متن کامل

Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources.

Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predic...

متن کامل

The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein.

Oxidation products of terpenes (e.g. limonene) contain unidentified irritants, which may be responsible for a fraction of the reported eye and airway complaints in indoor environments. Here we report exposure to parts per billion (ppb) levels of limonene oxidation products (LOPs) and the terpene oxidation product methacrolein using blink frequency (BF) as a measure of trigeminal stimulation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2000